Efficient and positive semidefinite pre-averaging realized covariance estimator
نویسندگان
چکیده
منابع مشابه
Dynamic covariance estimation via positive semidefinite dictionary learning
Time series are among the most prevalent forms of data we encounter in the real world, whether it be a sequence of audio, biomedical, demographic, climate, or financial measurements. Covariance estimation, where we try to estimate the covariance matrix of a time series, is a classic and important problem that can provide us predictive power in many applications. The vast majority of covariance ...
متن کاملHedging Ideally with Realized Covariance
In view of the recent documented hedging bias attributable to failing to accommodate volatility long memory, we suggest to use the simple, yet superior, realized variancecovariance (RVCOV) in dynamic hedging. For its incremental value from intradaily information, model-free and inherent long memory, RVCOV has been shown to be accurate without misspecification bias and easily generalized to high...
متن کاملThe incredible shrinking covariance estimator
Covariance estimation is a key step in many target detection algorithms. To distinguish target from background requires that the background be well-characterized. This applies to targets ranging from the precisely known chemical signatures of gaseous plumes to the wholly unspecified signals that are sought by anomaly detectors. When the background is modelled by a (global or local) Gaussian or ...
متن کاملSingular value inequalities for positive semidefinite matrices
In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].
متن کاملCompletely Positive Semidefinite Rank
An n×n matrix X is called completely positive semidefinite (cpsd) if there exist d×d Hermitian positive semidefinite matrices {Pi}i=1 (for some d ≥ 1) such that Xij = Tr(PiPj), for all i, j ∈ {1, . . . , n}. The cpsd-rank of a cpsd matrix is the smallest d ≥ 1 for which such a representation is possible. In this work we initiate the study of the cpsd-rank which we motivate twofold. First, the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistica Sinica
سال: 2021
ISSN: 1017-0405
DOI: 10.5705/ss.202017.0489